Skip to main content

Advertisement

Log in

Late Quaternary (24–10 ka BP) environmental history of the Neotropical lowlands inferred from ostracodes in sediments of Lago Petén Itzá, Guatemala

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We inferred late Pleistocene and early Holocene (24–10 ka BP) environmental conditions in and around Lago Petén Itzá, Guatemala from ostracode remains in the lake sediments. Multivariate statistics were run on autecological information for 29 extant ostracode species collected in 63 aquatic ecosystems on the Yucatán Peninsula along a steep, increasing NW–S precipitation gradient and across a large altitudinal range. Conductivity and water depth are the most important factors that shape ostracode communities. Transfer functions were developed and applied to fossil ostracode assemblages in a ~76-m sediment core (PI-6, ~85 ka) taken in 71 m of water from Lago Petén Itzá, to infer past shifts in conductivity and water level. Results suggest climate was cold and wet during the Last Glacial Maximum (LGM). Alternating dry and wet conditions characterized the deglacial. Early Holocene climate was warmer and wetter. The LGM was characterized by low ostracode species richness (4 spp.) and abundance (<940 valves g−1), dominance of benthic over nektobenthic taxa, abundant Physocypria globula, conductivity as low as 190 µS cm−1, and clay-rich sediments with relatively high total organic carbon and low C/N ratios (<14), suggesting relatively deeper water at the core site associated with abundant precipitation. Greatest water depth at the core site during the LGM occurred late in the period and was ~50 m. The deglacial was characterized by drier conditions, higher ostracode species richness (6 spp.) and abundances up to 18,115 valves g−1, dominance of nektobenthic species, and presence of shallow-water and littoral-zone indicators such as Heterocypris punctata and Strandesia intrepida, conductivity up to 550 µS cm−1, C/N ratios as high as 37, and gypsum deposition. Lowest inferred lake depth at the core site during the deglacial was ~20 m. The early Holocene was characterized by high numbers of ostracode remains, up to 25,500 valves g−1, and the presence of L. opesta and P. globula. Cytheridella ilosvayi was absent from late Pleistocene sediments, suggesting it colonized northern Central America during the Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcocer J, Bernal-Brooks FW (2010) Limnology in Mexico. Hydrobiologia 644:15–68

    Article  Google Scholar 

  • Anselmetti FS, Ariztegui D, Hodell DA, Hillesheim MB, Brenner M, Gilli A, McKenzie JA, Mueller AD (2006) Late Quaternary climate-induced lake level variations in Lake Petén Itzá, Guatemala, inferred from seismic stratigraphic analysis. Palaeogeogr Palaeoclimatol Palaeoecol 230:52–69

    Article  Google Scholar 

  • Basterrechea M (1988) Limnología del Lago Petén itzá, Guatemala. Rev Biol Trop 36:123–127

    Google Scholar 

  • Birks HJB (1998) Numerical tools in quantitative palaeolimnology–progress, potentialities, and problems. J Paleolimnol 20:307–332

    Article  Google Scholar 

  • Brehm V (1939) La Fauna microscopica del Lago Petén, Guatemala. An Esc Nac Cienc Biol Mex 1:173–203

    Google Scholar 

  • Bronk Ramsey C (2001) Development of the radiocarbon calibration program OxCal. Radiocarbon 43:355–363

    Google Scholar 

  • Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60

    Article  Google Scholar 

  • Bush MB, Correa-Metrio AY, Hodell DA, Brenner M, Anselmetti FS, Ariztegui D, Müller AD, Curtis JH, Grzesik DA, Burton C, Gilli A (2009) Re-evaluation of climate change in lowland Central America during the last glacial maximum using new sediment cores from Lake Petén Itzá, Guatemala. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions from the last glacial maximum to the Holocene. Springer, Netherlands, pp 113–128

    Chapter  Google Scholar 

  • Cohen A, Palacios-Fest MR, Negrini R, Wigand P, Erbes D (2000) A paleoclimate record for the past 250, 000 years from Summer Lake, Oregon, USA: II. Sedimentology, paleontology and geochemistry. J Paleolimnol 24:151–182

    Article  Google Scholar 

  • Curtis J, Hodell D, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 Years, and implications for Maya cultural evolution. Quat Res 46:37–47

    Article  Google Scholar 

  • Daday E (1905) Untersuchungen über die Süsswasser-Mikrofauna Paraguays. Zoologica 18:1–374

    Google Scholar 

  • Deevey ES, Stuiver M (1964) Distribution of natural isotopes of carbon in Linsley Pond and other New England lakes. Limnol Oceanogr 9:1–11

    Article  Google Scholar 

  • Deevey ES, Deevey G, Brenner M (1980) Structure of zooplankton communities in the Peten Lake District, Guatemala. In: Kerfoot WC (ed) The evolution and ecology of zooplankton communities. University Press of New England, Hanover, pp 669–678

    Google Scholar 

  • Ferguson EG, Hutchinson GE, Goulden CE (1964) Cypria petenensis, a new name for the ostracod Cypria pelagica Brehm 1932. Postilla 80:1–4

    Google Scholar 

  • Frenzel P, Wrozyna C, Xie M, Zhu L, Schwalb A (2010) Palaeo-water depth estimation for a 600-year record from Nam Co (Tibet) using an ostracod-based transfer function. Quat Internat 218:157–165

    Article  Google Scholar 

  • Furtos N (1933) The Ostracoda of Ohio. Ohio Biological Survey. The Ohio State University Press, Columbus, pp 413–524

    Google Scholar 

  • Furtos N (1936a) Fresh-water Ostracoda from Florida and North Carolina. Am Midl Nat 17:491–522

    Article  Google Scholar 

  • Furtos N (1936b) On the Ostracoda from the cenotes of Yucatán and vicinity. The cenotes of Yucatan, a zoological and hydrographic survey. Carnegie Institution of Washington, Washington, pp 89–115

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontol Electr 4:9

    Google Scholar 

  • Hausmann S, Kienast F (2006) A diatom-inference model for nutrients screened to reduce the influence of background variables: application to varved sediments of Greifensee and evaluation with measured data. Palaeogeogr Palaeoclimatol Palaeoecol 233:96–112

    Article  Google Scholar 

  • Hillesheim M, Hodell D, Leyden B, Brenner M, Curtis J, Anselmetti F, Ariztegui D, Buck D, Guilderson T, Rosenmeier M, Schnurrenberger D (2005) Climate change in lowland Central America during the late deglacial and early Holocene. J Quaternary Sci 20:363–376

    Article  Google Scholar 

  • Hodell DA, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391–394

    Article  Google Scholar 

  • Hodell DA, Brenner M, Curtis JH, Medina-González R, Ildefonso-Chan Can E, Albornaz-Pat A, Guilderson TP (2005) Climate change on the Yucatan Peninsula during the Little Ice Age. Quat Res 63:109–121

    Article  Google Scholar 

  • Hodell DA, Brenner M, Curtis J (2007) Climate and cultural history of the Northeastern Yucatan Peninsula, Quintana Roo, Mexico. Clim Change 83:215–240

    Article  Google Scholar 

  • Hodell DA, Anselmetti FS, Ariztegui D, Brenner M, Curtis JH, Gilli A, Grzesik DA, Guilderson T, Müller AD, Bush MB, Correa-Metrio A, Escobar J, Kutterolf S (2008) An 85-ka record of climate change in lowland Central America. Quat Sci Rev 27:1152–1165

    Article  Google Scholar 

  • INSIVUMEH (1985) Reconocimiento hidrogeológico de la cuenca del Lago Petén Itzá. Instituto de Sismología, Vulcanología, Meteorología e Hidrología, Guatemala

    Google Scholar 

  • Juggins S (2003) C2. Newcastle University, Newcastle upon Tyne

    Google Scholar 

  • Keyser D (1976) Zur Kenntnis der brackigen mangrovebewachsenen Weichböden Südwest-Floridas unter besonderer Berücksichtigung ihrer Ostracodenfauna. Dissertation zur Erlangung des Doktorgrades des Fachbereichs Biologie. Universität Hamburg, Hamburg

  • Keyser D (1977) Brackwasser-Cytheracea aus Süd-Florida (Crust.: Ostracoda: Podocopa). Abh Verh Naturwiss Ver Hamburg 20:43–85

    Google Scholar 

  • Liebau A (2005) A revised classification of the higher taxa of the Ostracoda (Crustacea). Hydrobiologia 538:115–137

    Google Scholar 

  • MARN-AMPI (2008) Línea de base territorial para la cuenca del Lago Petén Itzá. Projecto GU-T1021. Ministerio de Ambiente y Recursos Naturales, Autoridad para el Manejo y Desarrollo Sostenible de la cuenca del Lago Petén Itzá Guatemala

  • Martens K, Behen F (1994) A checklist of the recent non-marine ostracods (Crustacea, Ostracoda) from the inland waters of South America and adjacent islands. Trav Sci Musée Nat Luxemb 22:81

    Google Scholar 

  • Martens K, Schön I, Meisch C, Horne DJ (2008) Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595:185–193

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) The early diagenesis of organic matter in lacustrine sediments. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 185–209

    Google Scholar 

  • Mezquita F, Roca JR, Reed JM, Wansard G (2005) Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeogr Palaeoclimatol Palaeoecol 225:93–117

    Article  Google Scholar 

  • Mischke S, Herzschuh U, Massmann G, Zhang C (2007) An ostracod-conductivity transfer function for Tibetan lakes. J Paleolimnol 38:509–524

    Article  Google Scholar 

  • Mischke S, Almogi-Labin A, Ortal R, Rosenfeld A, Schwab MJ, Boomer I (2010) Quantitative reconstruction of lake conductivity in the Quaternary of the Near East (Israel) using ostracods. J Paleolimnol 43:667–688

    Article  Google Scholar 

  • Mourguiart P, Carbonel P (1994) A quantitative method of palaeolake-level reconstruction using ostracod assemblages: an example from the Bolivian Altiplano. Hydrobiologia 288:183–193

    Article  Google Scholar 

  • Müller AD, Anselmetti FS, Ariztegui D, Brenner M, Hodell DA, Curtis JH, Escobar J, Gilli A, Grzesik DA, Guilderson TP, Kutterolf S, Plötze ML (2010) Late Quaternary palaeoenvironment of northern Guatemala: evidence from deep drill cores and seismic stratigraphy of Lake Petén Itzá. Sedimentology 57:1220–1245

    Google Scholar 

  • Park L, Cohen AS, Martens K, Balek R (2003) The impact of taphonomic processes on interpreting paleoecologic changes in large lake ecosystems: ostracodes in Lake Tanganyika and Malawi. J Paleolimnol 30:127–138

    Article  Google Scholar 

  • Pérez L, Lorenschat J, Brenner M, Scharf B, Schwalb A (2010a) Extant freshwater ostracodes (Crustacea: Ostracoda) from Lago Petén Itzá, Guatemala. Rev Biol Trop 58:871–895

    Google Scholar 

  • Pérez L, Lorenschat J, Brenner M, Scharf B, Schwalb A (2010b) Non-marine ostracodes (Crustacea) of Guatemala. In: Cano E (ed) Biodiversidad de Guatemala, vol II. Universidad del Valle de Guatemala, Guatemala (in press)

  • Pérez L, Lorenschat J, Bugja R, Brenner M, Scharf B, Schwalb A (2010c) Distribution, diversity and ecology of modern freshwater ostracodes (Crustacea), and hydrochemical characteristics of Lago Petén Itzá, Guatemala. J Limnol 69:146–159

    Google Scholar 

  • Pérez L, Bugja R, Massaferro J, Steeb P, van Geldern R, Frenzel P, Brenner M, Scharf B, Schwalb A (2010d) Post-columbian environmental history of Lago Petén Itzá, Guatemala. Rev Mex Ciencias Geol 27:490–507

    Google Scholar 

  • Pérez L, Bugja R, Lorenschat J, Brenner M, Curtis J, Hoelzmann P, Islebe G, Scharf B, Schwalb A (2011) Aquatic ecosystems of the Yucatán Peninsula (Mexico), Belize and Guatemala. Hydrobiologia 661:407–433

    Article  Google Scholar 

  • Perry E, Velazquez-Oliman G, Marin L (2002) The hydrogeochemistry of the Karst aquifer system of the northern Yucatan Peninsula, Mexico. Internat Geol Rev 44:191–221

    Article  Google Scholar 

  • Scharf B, Bittmann F, Boettger T (2005) Freshwater ostracods (Crustacea) from the Lateglacial site at Miesenheim, Germany, and temperature reconstruction during the Meiendorf Interstadial. Palaeogeogr Palaeoclimatol Palaeoecol 225:203–215

    Article  Google Scholar 

  • Schmitter-Soto JJ, Comín FA, Escobar-Briones E, Herrera-Silveira J, Alcocer J, Suárez-Morales E, Elías Gutiérrez M, Díaz-Arce V, Marín LE, Steinich B (2002) Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467:215–228

    Article  Google Scholar 

  • Smith A (1993) Lacustrine ostracodes as hydrochemical indicators in lakes of the non-central United States. J Paleolimnol 8:121–134

    Article  Google Scholar 

  • Sywula T (1977) Ostracoda. In: Wroblewsi A (ed) Bottom fauna of the heated Konin lakes. Monogr Fauny Polski, vol 7, pp 181–203

  • ter Braak CJF, Smilauer P (2002) CANOCO 4.5. Micropower computer, Ithaca, New York

  • Viehberg F (2004) Paleolimnological study based on ostracods (Crustacea) in Late-glacial and Holocene deposits of lake Krakower See in Mecklenburg-Vorpommern, NE Germany. Stud Quatern 21:109–115

    Google Scholar 

  • Viehberg F (2006) Freshwater ostracod assemblages and their relationship to environmental variables in waters from northeast Germany. Hydrobiologia 571:213–224

    Article  Google Scholar 

  • Wrozyna C, Frenzel P, Schwalb A, Steeb P, Liping Z (2009) Water depth related assemblage composition of recent Ostracoda in Lake Nam Co, southern Tibetan Plateau. Rev Española Micropaleontol 41:1–20

    Google Scholar 

Download references

Acknowledgments

We thank all those who facilitated fieldwork in Mexico, Belize and Guatemala. Special thanks to: Andreas Müller and other participants in the Petén Itzá Scientific Drilling Project, Aaron Lewis (University of Belize), the Forestry and Fisheries Departments (Belize), Margarita Palmieri, Margaret Dix, Roberto Moreno, Eleonor de Tott (Universidad del Valle de Guatemala), Rodrigo Morales, Franklin Herrera (CONAP, Guatemala), Ismael Ordóñez (AMSCLAE, Guatemala), Julio Morales Cancino (AMPI, Guatemala), Roderico Pineda, Mario Buch (Trifinio, Guatemala), Gerald Islebe (ECOSUR-Chetumal, México), Secretaría de Relaciones Exteriores (SRE, México), Comisión Nacional de Acuacultura y Pesca (CONAPESCA, México), Alberto de Jesús Navarrete (ECOSUR-Chetumal, México), the National Lacustrine Core Repository (LacCore, University of Minnesota), Julia Lorenschat, Rita Bugja, Rita Löhr, Benjamin Gilfedder, Yvonne Hermanns, Harald Biester (Institut für Umweltgeologie, Braunschweig), Dietmar Keyser (Zoologisches Institut und Zoologisches Museum, Hamburg), Steffen Mischke (Freie Universität Berlin), Douglas Schnurrenberger, Dustin Grzesik, David Klassen, Luciana Mitsue, José Harders, Carmen Herold, Bessie Oliva, Alma Quilo, Gabriela Alfaro, Jacobo Blijdenstein, Melisa Orozco, Silja Ramirez, Luis Toruño, Mario Cruz, Javier Pérez y Pérez, and Carolina Alvarado de Pérez. The Deutsche Forschungsgemeinschaft (DFG, grant Schw 671/3) and the Technische Universität Braunschweig provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liseth Pérez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 105 kb)

10933_2011_9514_MOESM2_ESM.jpg

Light microscope pictures of external views of ostracode valves. RV stands for right valve and LV for left valve. The sex of the individual was determined if softparts were available. 1. Cypretta brevisaepta (LV); 2. Cypridopsis okeechobei (LV); 3. Cypridopsis vidua (RV, ♀); 4. Cytherura sandbergi (LV, ♀); 5. Darwinula stevensoni (RV, ♀); 6. Elpidium bromeliarum (RV); 7. Eucypris sp. (RV); 8. Heterocypris punctata (RV, ♂); 9. Ilyocypris gibba? (RV); 10. Limnocythere floridensis (LV, ♂); 11. Limnocythere opesta (RV, ♀); 12. Limnocythere sp. (LV); 13. Loxoconcha sp. (RV, ♂); 14 Paracytheroma stephensoni (LV); 15. Perissocytheridea cribosa (LV, ♂); 16. Physocypria denticulata? (RV); 17. Physocypria globula (RV); 18. Physocypria xanabanica (LV); 19. Potamocypris sp. (RV); 20. Thalassocypria sp. (LV, ♂); 21. Candona sp. (RV, ♂); 22. Cyprideis sp. (RV, ♂); 23. Candonocypris serratomarginata (LV); 24. Chlamydotheca colombiensis (LV); 25. Cytheridella ilosvayi (RV, ♀); 26. Pseudocandona sp. (LV); 27. Stenocypris major (LV, ♀); 28. Strandesia intrepida (RV); 29. Trajancypris sp. (RV) (JPEG 1949 kb)

10933_2011_9514_MOESM3_ESM.jpg

Scanning Electron Microscope ostracode pictures. RV stands for right valve and LV for left valve. The sex of the individual was determined if softparts were available. 1a. Perissocytheridea cribosa (external view, LV, ♀); 1b. P. cribosa (external view, LV, ♂); 2. Limnocythere floridensis (external view, LV); 3a. Limnocythere opesta (external view, ♀, RV); 3b. L. opesta (external view, ♂, LV); 4a. Cyprideis sp. (external view, ♂, RV), 4b. Cyprideis sp. (internal view, ♂, LV); 5a. Thalassocypria sp. (internal view, RV, ♂?); 5b. Thalassocypria sp. (external view, LV, ♂?); 6a. Cypridopsis okeechobei (external view, RV, ♀); 6b. C. okeechobei (internal view, RV, ♂); 7. Pseudocandona sp. (external view, LV, ♂); 8. Cypretta brevisaepta? (external view, LV); 9. Loxoconcha sp. (external view, LV); 10a. Physocypria denticulata? (external view, LV, ♂); 10b. P. denticulata? (internal view, RV); 11a. Physocypria globula (external view, RV, ♀); 11b. P. globula (internal view, RV, ♀); 12a. Physocypria xanabanica (external view, LV, ♂); 12b. P. xanabanica (internal view, RV, ♀); 13. Darwinula stevensoni (external view, ♀, RV); 14. Potamocypris sp. (carapace external view, left side); 15. Cytheridella ilosvayi (dorsal view, carapace, ♀); 16. Strandesia intrepida (external view, LV, ♂); 17a. Stenocypris major (external view, RV, ♀); 17b. S. major (internal view, RV, ♀); 18a. Heterocypris punctata (external view, RV, ♂); 18b. H. punctata (internal view, RV, ♂); 19. Candonocypris serratomarginata (external view, LV) (JPEG 3697 kb)

Supplementary material 4 (DOC 158 kb)

Supplementary material 5 (DOC 150 kb)

Supplementary material 6 (DOC 51 kb)

Supplementary material 7 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, L., Frenzel, P., Brenner, M. et al. Late Quaternary (24–10 ka BP) environmental history of the Neotropical lowlands inferred from ostracodes in sediments of Lago Petén Itzá, Guatemala. J Paleolimnol 46, 59–74 (2011). https://doi.org/10.1007/s10933-011-9514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-011-9514-0

Keywords

Navigation